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We study spontaneous symmetry breakings for fermions �spinless and spinful� on a two-dimensional kagome
lattice with nearest-neighbor repulsive interactions in weak coupling limit, and focus in particular on topologi-
cal Mott insulator instability. It is found that at 1

3 -filling where there is a quadratic band crossing at �-point, in
agreement with K. Sun, H. Yao, E. Fradkin, and S. Kivelson, Phys. Rev. Lett. 103, 046811 �2009�, the
instabilities are infinitesimal and topological phases are dynamically generated. At 2

3 -filling where there are two
inequivalent Dirac points, the instabilities are finite, and no topological phase is favored at this filling without
breaking the lattice translational symmetry. A ferromagnetic quantum anomalous Hall state with infinitesimal
instability is further proposed at half-filling of the bottom flat band.
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I. INTRODUCTION

Recent interests have been revived in Fermi surface insta-
bilities in connection with dynamic generation of topological
Mott insulators.1–5 The first step is forwarded by Wu and
Zhang3,4 where a new mechanism of generating spin-orbit
coupling in strongly correlated, nonrelativistic systems is
proposed. Attentions are then focused in particular when the
Fermi surface shrinks into discrete points, usually as band-
crossing points �BCP�, where the quasiparticle excitations
are not described by the Fermi liquid theory. Two examples
are discussed in two-dimensional �2D� honeycomb2 and
checkerboard lattice1 with C6 and C4 rotational symmetry
respectively. In the honeycomb lattice,2 the BCPs have lin-
early vanishing density of states �DOS� at the Dirac points.
Therefore only a full gap opening at the filling to the Dirac
points could facilitate gaining energy, and the nodal phase
becomes unstable only above finite critical interactions.2,6,7

While in the checkerboard lattice,1 the BCP has quadratic
dispersion with constant DOS in 2D, so that any gap opening
at the BCP would help to gain energy and lead to the infini-
tesimal instabilities1,8 of the spontaneous breaking of rota-
tional or time-reversal symmetries �TRS�. A three-
dimensional example5 is discussed in diamond lattice where
topological phases are realized due to the spontaneous break-
ing of spin-rotation symmetry.

Infinitesimal instabilities were proposed in 2D interacting
systems with a quadratic BCP, which is protected by TRS
and C4 or C6 rotational symmetry.1,8 In the explicit example
with C4 symmetry in checkerboard lattice,1 unequal next-
nearest-neighbor hoppings connected and not by diagonal
bonds are required to make the BCP quadratic, which makes
it hard to search for real materials. In this work, we suggest
to realize the infinitesimal topological instabilities in 2D
kagome lattice with C6 symmetry, where the kagome com-
pound herbertsmithite9–11 appears to be a good candidate.
The kagome lattice is a triangular lattice with three sites per
unit cell, see Fig. 1. Within only the nearest-neighbor �nn�
hopping, it has three bands, the top two bands cross at two

inequivalent Dirac points and the bottom is a flat band. How-
ever, interestingly, by considering a small next-nearest-
neighbor �nnn� hopping, the flat band becomes dispersive,
and its band structure shows both quadratic and Dirac BCPs
at 1

3 - and 2
3-fillings separately, which facilitates us to stress

the differences of these two types of BCPs in a very same
system. Although the magnetic properties of kagome lattice
were studied extensively,12–14 only little attention has been
paid to its nonmagnetic insulating behavior, especially the
physics near the quadratic BCP. Recently, topological phases
with broken TRS and quantized Hall conductance on kagome
lattice have been studied for noninteracting fermions,15–17

while interacting fermions with broken symmetries are rarely
explored. Finally, we propose that a ferromagnetic quantum
anomalous Hall phase with infinitesimal instability can be
naturally realized at the half-filling of the bottom flat band.

FIG. 1. Kagome lattice. There are three sites �“A, B, C”� per
unit cell, b1, b2 are bravais vectors. The arrows on the links repre-
sent currents respecting the reflection symmetry between up �dark�
and down �gray� triangles, by breaking which together with TRS, a
quantum anomalous Hall state is spontaneously generated.
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II. SYMMETRIES AND ORDER PARAMETERS

Before discussing specific models we first analyze the
symmetries and define order parameters. The symmetries of
importance on kagome lattice under considerations are �i�
reflection symmetry between up and down triangles, �ii� C3
rotational symmetry around the centers of triangles, and �iii�
time-reversal symmetry. We assume that the lattice transla-
tional symmetry wouldn’t be broken, namely, we do not con-
sider the phases with finite q=K1−K2 in the susceptibilities,
where K1 and K2 are the two Dirac points. This is always
true at 1

3 -filling because there is only one BCP at �-point,
and the instabilities occur only at q=0 which preserves the
lattice translational symmetry. Based on the symmetry con-
siderations, we introduce the order parameters as below.
Note that in the case of spinless fermions, since the order
parameters, defined only in the sublattice space with �k

†

= �CkA
† CkB

† CkC
† �, have the same form as those in the spinful

case, we only write down the order parameters in spinful
case explicitly. For site order, the order parameters are
N��n��= ����� � Is�Rs����, where �=0,1 ,2 ,3 and �k

†

= �CkA↑
† CkB↑

† CkC↑
† CkA↓

† CkB↓
† CkC↓

† �. Here �� are Pauli matrices in
spin space, and Is=diag�111�, Rs=diag�1ei�0e2i�0� are 3 by 3
matrices in sublattice space with �0= 2�

3 . Among these order
parameters, those of interests are n0 for nematic state �spon-
taneous breaking of rotational symmetry� and n� for nematic-
spin-nematic �NSN� state.4,18 This is because the charge �N0�
and spin density wave �N� � order parameters remain constants
in the assumption of translational invariance, and in this as-
sumption, the ferromagnetic states double meant by N� is
competitive only at half-filling of the bottom flat band since
we do not consider the spin-orbit coupling here. For bond
order, the order parameters are �u�d�

� = ����� � Ib
u�d���� and

	u�d�
� = ����� � Rb

u�d����, where the subscripts “u” and “d” in-
dicate the order parameters defined in up and down triangles,
respectively, and

Ib
u = �0 1 0

0 0 1

1 0 0
�, Ib

d = � 0 0 eix1

e−ix2 0 0

0 e−i�x1+x2� 0
� ,

Rb
u = � 0 1 0

0 0 ei�0

e2i�0 0 0
� ,

Rb
d = � 0 0 ei�2�0+x1�

e−ix2 0 0

0 ei��0−x1−x2� 0
� , �1�

with xi=k ·bi, i=1,2, where b1 and b2 are bravais vectors of
kagome lattice �see Fig. 1�. The order parameters under con-
siderations are �u�d�

� which do not break the C3 rotational
symmetry for bond order.

III. SPINLESS FERMIONS

The model Hamiltonian for spinless fermions with only
nn repulsive interactions is

H = t�
�ij�

�ci
†cj + H.c.� − t��

	ij

�ci

†cj + H.c.� + V�
�ij�

ninj , �2�

where t� · t
0 is a small nnn hopping which is taken accord-
ing to the transfer integrals in a natural spin-1/2 kagome
compound known as herbertsmithite.9–11 The nnn hopping
term makes the bottom flat band dispersive and quadratic at
the �-point with which the Fermi surface crosses at 1

3 -filling.
However this term would not affect the low energy expan-
sion near the Dirac points at 2

3 -filling. The nn repulsive in-
teractions for side order will in general favor the nematic
phase, which breaks the C3 rotational symmetry, with com-
plex order parameter n= �nA�+ei�0�nB�+e2i�0�nC�, where
�n��= �c�

†c��, �=A ,B ,C. There are two independent order pa-
rameters in this phase, the real part of n depicts the picture
that the charge densities are equal on sites B and C but dif-
ferent on site A, while the imaginary part of n visualizes that
the charge densities on the three sites are all different. At
1
3 -filling, the nematic order parameters split the quadratic
touching at �-point with 2� Berry phase8,19 into two Dirac
points with � Berry phase each, thus open a gap at �-point to
gain energy. At 2

3 -filling, the nematic order parameters pull
the two Dirac points closer for small V. While at large V, the
two Dirac points with opposite Berry phases annihilate each
other and open a full gap to gain energy. Therefore the nem-
atic order is always a competing phase at both fillings. The
phase transition into nematic phase is of the first order. Our
numerics show that the nematic phase will stabilize at large
V for both fillings with Re�n�= �1, respectively, where the
charge densities reside all in A-site at 1

3 -filling and equally in
B- and C-sites at 2

3 -filling.
For bond order, due to the frustration of the nn repulsive

interactions, we consider the possibilities of breaking reflec-
tion symmetry �or parity� between up and down triangles and
TRS, while conserve the C3 rotational symmetry �	u�d�

� =0�.
The order parameters, �u�d�, lead to four independent ones,
�R�= 1

2 	Re��u��Re��d�
 and �I�= 1
2 	Im��u�� Im��d�
.

Among these, �R+ is only a renormalization of the nn hop-
ping energy t and does not break any symmetry. While �R−

breaks the parity and is responsible for the bond density
wave �BDW� phase where the hopping amplitude differs in
up and down triangles. This order parameter will remain the
degeneracy of �-point at 1

3 -filling, but opens a full gap at
2
3 -filling thus gain energy. For the imaginary parts which
break the TRS generally, �I+ respects the parity and corre-
sponds to a staggered flux picture, this order parameter
would not open a gap at �-point, and only shifts up-and-
down the energies at the two Dirac points. While �I− breaks
both parity and TRS giving rise to the quantum anomalous
Hall �QAH� phase with topologically protected edge states20

and opens a full gap at both fillings.
The mean-field Hamiltonian for spinless fermions is

HMF=E0+ 1
L2 �k�k

†	h0�k�+h1�k�
�k. The first term in the
Hamiltonian includes the nn and nnn hoppings, and
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h1�k� = − V� 2�nA� �u
� + �de−ix2 �u + �d

�eix1

�u + �d
�eix2 2�nB� �u

� + �de−ix3

�u
� + �de−ix1 �u + �d

�eix3 2�nC�
� ,

�3�

with E0= 2V
3 	Re�n�2+Im�n�2
+6V	�R+

2 +�R−
2 +�I+

2 +�I−
2 
. The

mean-field free energy is obtained as

F�n,�u,�d� = E0 −
1

L2�i�all
log�1 + e−Ei� , �4�

where =1 /kBT, and L2 is the number of unit cells. Since the
order parameters are classified by different symmetries they
usually order at different Tc, therefore by minimizing the free
energy with respect to the order parameters separately, we
could study the mean-field phase diagram at finite tempera-
tures. The phase diagram at 1

3 -filling is shown in Fig. 2,
where we see that the instabilities are infinitesimal at this
filling, i.e., the symmetries are broken at low temperatures
for arbitrarily weak interactions. However this infinitesimal
instability is absent in the phase diagram at 2

3 -filling due to
the vanishing DOS at Fermi level. Our numerics show that at
zero temperature, there are two quantum phase transition
points. For small V, the system remains in the semimetal
phase, until Vc1=1.85t, the system goes into the BDW phase,
and finally stabilizes in the nematic phase for V�Vc2
=2.55t. Note that the QAH phase never dominates in the
phase diagram at 2

3 -filling near the Dirac points without
breaking the lattice translational symmetry.

The infinitesimal instabilities are predicted in Ref. 1 in
both checkerboard and kagome lattices with C4 and C6 sym-
metries, where the phase diagram is obtained in checker-
board lattice at half-filling. Here we see that for spinless
fermions on kagome lattice, similar phase diagram is ob-
tained at 1

3 -filling by lifting the degeneracies of the flat band
and make it quadratic at �-point. The infinitesimal instability
at 1

3 -filling on kagome lattice can be seen more clearly by
projecting the mean-field Hamiltonian into the two low en-
ergy states �†= ��1

†�2
†� near �-point as

Heff =
1

L2�
k

�k
†�h0

eff −
V

2
�Q1�z + Q2�x + ��y���k

+
V

4
�Q1

2 + Q2
2 + �2� , �5�

where h0
eff=d0�0+dx�x+dz�z with d0= �t−2t��k2, dx=−2�t

+ t��kxky, and dz=−�t+ t���kx
2−ky

2�, which have d-wave sym-
metry, and Q1= ��†�z��, Q2= ��†�x�� are the effective
nematic order parameters, �= ��†�y�� is the QAH order
parameter. Here �i’s are Pauli matrices in quasiparticle
space. For weak coupling, the ground state of Hamiltonian
�5� is QAH phase with the gap function at T=0 given by
��

1
Vexp	− 1

�0V 
, where �0 is the constant DOS for a 2D qua-
dratic system. We see that at the phase boundary the interac-
tions have infinitesimal instability, and the phase transition is
of the second order. In contrast, by projecting the original
Hamiltonian into the two high energy states near Dirac
points, we have d0= t+2t�, dx=−3tkx, and dz=3tky, which
has p-wave symmetry. In this case, the gap function for QAH
phase is ��1− �2

V2 where � is the momentum cutoff, we see
that at the phase boundary Vc��, which is finite. We also
perform the renormalization �RG� group analysis21 based on
the projected interacting model at both fillings. Specifically,
the result is very similar to that obtained in Ref. 1 at 1

3 -filling.
The interaction is marginal at the tree level, as expected from
the constant DOS at the quadratic BCP; while it is margin-
ally relevant at the one-loop level, which makes the system
flow to strong coupling, supporting our mean-field results for
symmetry broken phases. Except for the proportional con-
stant which is model-dependent, the beta function is qualita-
tively the same as that given in Ref. 1. However at 2

3 -filling,
the interaction is irrelevant at the one-loop level of the RG
and higher loops are quite involved.

IV. SPINFUL FERMIONS

Now we take the spin degrees of freedom into account
and discuss the spin-1

2 fermions on kagome lattice. In addi-
tion to the nn repulsive interactions, we also include an on-
site repulsive Hubbard term as well as a nn exchange term,

H = t �
�ij��

�ci�
† cj� + H.c.� − t� �

	ij
�
�ci�

† cj� + H.c.�

+ U�
i

ni↑ni↓ + V�
�ij�

ninj + J�
�ij�

S� i · S� j , �6�

where ni=ni↑+ni↓. For site order, besides the nematic order
n0 as discussed in the spinless case where there is no spin
order, there is a spin-triplet order parameter n� , nematic-spin-
nematic phase, where there is no charge order. Different from
the checkerboard lattice with C4 symmetry, the spin degrees
of freedom would not restore the C6 symmetry of kagome
lattice in charge sector, therefore we expect both nematic and
NSN phases in the phase diagram. With the spin degrees of
freedom, the nematic order has contributions from both the
spin-singlet channel of Hubbard term U

4 nini, and the nn re-
pulsion term Vninj, which together form an effective nn re-
pulsion V�=V− U

4 mimicking the nematic phase in the spin-

FIG. 2. �Color online� Finite temperature mean-field phase dia-
gram for spinless fermions in kagome lattice at 1

3 -filling with t� / t
=0.3. Thick and thin lines are respectively second and first order
transitions.
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less model, therefore the nematic phase exists only in the
region 0�U�4V in the U−V plane. For the NSN order, it
comes only from the spin-triplet channel in the Hubbard term
− U

3 Si ·Si where Si
a= 1

2ci�
† ��

a ci. The NSN order parameters
shift the two degenerate quadratic touchings into four Dirac
points and open a gap at �-point thus gain energy. At
2
3 -filling, the NSN order parameters split the two Dirac points
into four at small U, one of the Kramer’s pair will go closer
and annihilate to open a gap as U increases, but the other two
still remain linear touching and no full gap is opened, so that
not like the nematic order, the NSN order is not competitive
at 2

3 -filling.
The bond orders all come from the nn repulsive interac-

tions V. The spin-singlet ones �u�d�
0 are the order parameters

of QAH phase as discussed in the spinless model, while the
spin-triplet ones �� u�d� are the order parameters responsible
for quantum spin Hall �QSH� phase.2,22 The QSH phase can
be visualized as double QAH layers with opposite flux, and
in each layer, it is a QAH picture which breaks simulta-
neously the parity and the TRS. There are totally 12 indepen-
dent spin-triplet order parameters which are �R�

i

= 1
2 	Re��u

i ��Re��d
i �
 and �I�

i = 1
2 	Im��u

i �� Im��d
i �
 where

i=1,2 ,3. Since the full Hamiltonian �6� has SU�2� symmetry
we could choose �u�d�

� = ��u�d�
0 ,0 ,0 ,�u�d�

3 � without loss of
generality, therefore the number of spin-triplet order param-
eters is reduced into four. First, we note that �I−

3 and �R−
3 are

degenerate with �I−
0 and �R−

0 , respectively, this is because at
the mean-field level, the effective hopping satisfies tu�d�

↑

= td�u�
↓ and h1

↓=h1
↑�u↔d� which give the same spectrum due

to the lattice symmetry. Therefore the QAH and QSH phases
gain equal energies in the nn repulsive interactions V at both
fillings, and both �R−

0,3 are BDW order parameters. Second,
the order parameter �R+

3 breaks only the SU�2� symmetry
and splits the energy bands with different spins by shifting
the energy at �-point up-and-down a magnitude of V��R+

3 �,
respectively, but keeps the quadratic point touched. So the
gap opened at �-point of magnitude 2V��R+

3 � is only due to
spin-splitting without reducing the DOS. Finally, for the ex-
change term HJ= J

4 	2ni−ninj −2�ci
†cj��ci

†cj�†
, the ninj term is
only a shift of V to V− J

4 and gains equal energy for both
QAH and QSH phases. However, the last term is the spin-
singlet QAH order parameter, so that depending on the sign
of the exchange coupling, the QAH phase will be favored if
J
0, otherwise the QSH phase will dominate if J�0.

The mean-field free energy at zero temperature is F=E0

+ 1
L2 �i=1

Nf Ei where E0= 2
3V��n0�2+ U

18 �n3�2+3V��=0,3��R+
�2 +�R−

�2

+�I+
�2+�I−

�2�, and Nf =6L2f with the filling f = 1
3 and 2

3 . By
minimizing the free energy, the quantum mean-field phase
diagrams in the U−V plane are shown in Fig. 3�a� at 1

3 -filling
and in Fig. 3�b� at 2

3 -filling. At 1
3 -filling, it is seen again that

all the broken symmetries have infinitesimal instabilities. We
first notice that the spin-splitting phase �with the order pa-
rameter �R+

3 � would not win over any other competing phase
in the entire U−V plane, which agrees with our analysis
above. When 0�4V�U where the effective interaction for
nematic order V� is attractive, only the NSN and the QAH/
QSH orders compete. Starting from the U=0 axis, the topo-
logical phases win first for arbitrarily weak nn repulsion V,
and then be suppressed by the NSN phase at large U. When

0�U�4V where all nematic, NSN and topological phases
compete, the NSN order is completely suppressed. The topo-
logical phase dominates at small V but then be taken over by
the nematic phase, as seen in the spinless case, and the large
on-site U helps to reduce the nematic order further. At
2
3 -filling, all the instabilities are finite again, and the topo-
logical phases are not favored at all. Compared with the
phase diagram in spinless case, we notice that at U=0, the
multichannel repulsions ↑↑, ↓↓, ↑↓, and ↓↑ in the nn repul-
sion V in spinful model, facilitate the ordering of nematic
phase relative to BDW phase, therefore the BDW phase dis-
appears in the U=0 axis, and the nematic phase begins to
order at a finite interaction V
Vc=1.25t. However, this mul-
tichannel advantage is suppressed by large on-site Hubbard
term, and the BDW appears for U�Uc=2.44t. In the phase
diagram at 2

3 -filling, we need to point out that the nodal
phase at small-V and large-U should not be taken too seri-
ously. Since there are two Dirac points at this filling, the
system could in principle gain energy by breaking the lattice
translational symmetry and nesting between them, which is
the case we do not consider in our discussions.

Finally we discuss in brief the idea of ferromagnetic QAH
state with infinitesimal instabilities at half-filling of the bot-
tom band on kagome lattice. If we consider only the nn hop-
ping t, the bottom band is completely flat. In the presence of
an on-site repulsive Hubbard term, its ground state is ferro-
magnetic at 1

6 -filling.12,23 Now if we turn on the nn repulsion
V, where the physics is effectively depicted by the spinless

FIG. 3. �Color online� Zero temperature mean-field phase dia-
gram for spin-1

2 fermions in kagome lattice at �a� 1
3 -filling �b�

2
3 -filling with t� / t=0.3. Thick and thin lines are, respectively, sec-
ond and first order transitions. The phase diagram at 2

3 -filling with
small V and large U should not be taken too seriously.
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model at 1
3 -filling discussed before, the QAH state with in-

finitesimal instabilities will be favored in the ferromagnetic
background. The ferromagnetic QAH phase is a topological
state with quantized Hall conductivity �xy = e2

h , it is stable
even in the presence of a small nnn hopping t�. The ferro-
magnetic QAH state has been proposed in Hg1−yMnyTe
quantum wells with Mn-doped impurities,24 where a small
magnetic filed is still needed to polarize the Mn moments.
However, on kagome lattice, we only need to tune the filling
to right to realize the ferromagnetic QAH state. The detail
study of the ferromagnetic QAH state on kagome lattice will
be present in a separate work.25

The material ZnCu3�OH�6Cl2, known as herbertsmithite,
appears to be an excellent realization of the 2D spin-1

2
kagome lattice.9,11 This material consists of Cu kagome lay-
ers separated by nonmagnetic Zn layers, structurally with

space group R3̄m and lattice parameters c=14.049 Å which
is twice of a=b=6.832 Å. The transfer integrals t and −t� of
this material are 87 and −10 meV, respectively,11 which im-
plies the opposite sign between nn and nnn hoppings and

their ratio is quantitatively in agreement with that taken in
our numerics. We suggest to realize all the symmetry broken
phases on spin-1

2 kagome lattice by tuning the filling, say
replacing the Cl− ions with sulfur �S� or oxygen �O�, in this
kind of material.

Note added. In a related work,26 the fine tuning of an extra
second nearest-neighbor interaction is needed to stabilize the
topological phase at the filling to the Dirac points in kagome
lattice.
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